NOTE

NUCLEAR MAGNETIC RESONANCE STUDIES IN COORDINATION CHEMISTRY XI*. A KINETIC STUDY OF EXCHANGE REACTIONS IN CID₂C-CD₂Cl INVOLVING 1,5-CYCLOOCTADIENERHODIUM(I) CHLORIDE TRIPHENYLARSINE AND THE PARENT DIMER

P. W. N. M. VAN LEEUWEN, K. VRIEZE AND A. P. PRAAT Koninklijke/Shell-Laboratorium, Amsterdam (Shell Research N.V.), (The Netherlands)

(Received July 30th, 1969)

INTRODUCTION

Studies on the effect of solvents on exchange reactions in square-planar complexes have continued with the system $[(COD)RhCl]_2$ (dimer) and (COD)-RhCl(AsPh₃) (monomer) in ClD₂C-CD₂Cl (COD = 1,5-cyclooctadiene).

In Part VIII² of this series we described how exchange reactions involving the same dimer and monomer were affected by the solvents $CDCl_3$ and CD_2Cl_2 . It was found that in CD_2Cl_2 the behaviour is that normally found with arsines, *i.e.* reactions of the monomer with the free ligand and reactions of the dimer with the free ligand, the free-ligand concentration being dependent on the monomer and dimer concentrations. In $CDCl_3$, however, the line-broadening observed for the monomer appeared to be independent of the monomer and dimer concentrations while the lifetime-broadening of the dimer was linearly dependent on the monomer concentration and inversely proportional to the dimer concentration. As a result the following reaction scheme was put forward:

$$ML \rightleftharpoons "ML"$$
 (slow) (1)

$$^{*}ML^{*} + M^{*}M \rightarrow ^{*}M^{*}L^{*} + M_{2} \quad (fast)$$
⁽²⁾

where ML is the monomer, MM or M_2 is the dimer, and "ML" is an unknown species presumably generated by intramolecular rearrangement or a change in solvation. This scheme requires that reaction (1) must be slow in NMR terms and that (2) must be fast.

The reason for investigating the same system in $(CD_2Cl)_2$ was that the properties of this solvent lie between those of $CDCl_3$ and CD_2Cl_2 . The behaviour was expected to be similar to that found in $CDCl_3$ since at low M_2 concentrations the behaviour in CD_2Cl_2 resembles the $CDCl_3$ case.

^{*} For Part X see ref. 1.

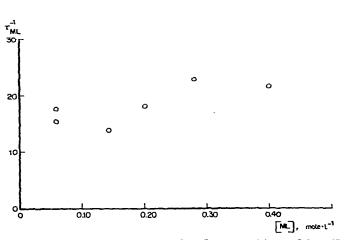


Fig. 1. The dependence of τ_{ML}^{-1} on [ML] in $(CD_2Cl)_2$ at 5° for ML = $(COD)RhCl(AsPh_3)$.

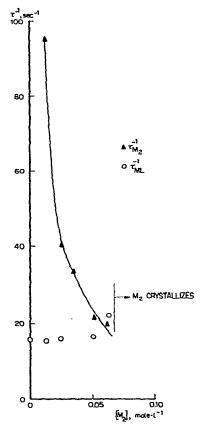
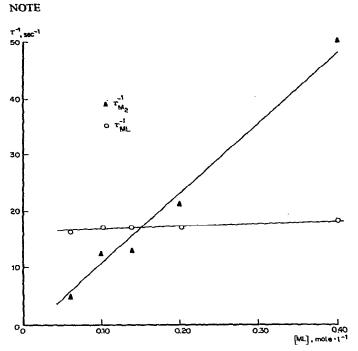
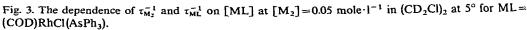
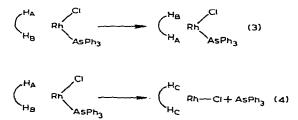




Fig. 2. The dependence of $\tau_{M_2}^{-1}$ and τ_{ML}^{-1} on $[M_2]$ at [ML] = 0.20 mole $\cdot 1^{-1}$ in $(CD_2Cl)_2$ at 5° for $ML = (COD)RhCl(AsPh_3)$.


J. Organometal. Chem., 20 (1969) 277-280

RESULTS AND DISCUSSION

The experimental details are given in Part VIII². The concentration dependences are given in Figs. 1–3. In Fig. 1 it is seen that the left-right interchange of the square-planar complex is almost independent of the monomer concentration itself. Hence the exchange reaction is a simple monomolecular process (3) or a dissociation process (4):

Mixtures of monomer and dimer (Figs. 2 and 3) give the following results for the exchange line-broadening (τ^{-1}) :

 $\tau_{\rm ML}^{-1} = k + \text{other, small contributions}$

$$\tau_{M_2}^{-1} = k \cdot \frac{[ML]}{2[M_2]}$$

Unfortunately, the insolubility of M_2 made measurement at concentrations above

J. Organometal. Chem., 20 (1969) 277-280

0.07 mole·l⁻¹ impossible. A slight increase of τ_{ML}^{-1} was observed at $[M_2] = 0.06$ mole·l⁻¹.

The rates of ML are slightly higher than expected and some other reactions must contribute to τ_{ML}^{-1} . The kinetic parameters are $k = 10^{10.5} \cdot e^{-12000/RT}$ (activation energy in cal/mole). The absolute rates in ClD₂C-CD₂Cl are one-third higher than the rates in CDCl₃.

The mechanism may well be the one mentioned in the introduction, or, assuming dissociation, it may be as follows. The dissociation reaction is relatively fast ($\tau_{ML}^{-1} = 18 \text{ sec}^{-1}$ at 5°) but the amount of L formed must remain very small since the reaction:

$$\begin{pmatrix} A \\ B \end{pmatrix} ML + L^{*} \longrightarrow \begin{pmatrix} B \\ A \end{pmatrix} ML^{*} + L \qquad (5)$$

would have a τ_{ML}^{-1} in the order of 20 when $[L] = 10^{-2}$ mole $\cdot l^{-1}$ at 5° (Part VIII²). The concentration dependence of this reaction has not been found. The dissociation reactions responsible for the kinetics found are:

$$ML \Leftrightarrow M+L \tag{6}$$
$$M_2 \rightleftharpoons 2 M \text{ (fast)} \tag{7}$$

The species M is in fast exchange with M_2 and hence the reverse reaction in eqn. (6) is observed in the collapsed signal of M_2 and M. The resulting reciprocal lifetimes are:

$$\tau_{ML}^{-1} = k_6$$

$$\tau_{M_2}^{-1} = \frac{[M]}{2[M_2] + [M]} \cdot k_{-6} \cdot [L] = k_6 \frac{[ML]}{2[M_2]}$$

The derivation of the latter equations will be found in Part II^3 of this series and a recent review⁴.

REFERENCES

- 1 P. W. N. M. VAN LEEUWEN, K. VRIEZE AND A. P. PRAAT, J. Organometal. Chem., 20 (1969) 219.
- 2 K. VRIEZE, H. C. VOLGER AND A. P. PRAAT, J. Organometal. Chem., 15 (1968) 447.
- 3 K. VRIEZE, P. COSSEE, C. W. HILBERS AND A. P. PRAAT, Rec. Trav. Chim. Pays-Bas, 86 (1967) 769.
- 4 K. VRIEZE, H. C. VOLGER AND P. W. N. M. VAN LEEUWEN, Inorg. Chim. Acta Rev., in press.

J. Organometal. Chem., 20 (1969) 277-280